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We present the first method guaranteed to find the best possible least-squares (ø2) fit of experimental data by
a nonlinear kinetic model. Several important advantages of knowing with certainty the best possible fit rather
than a locally optimum fit are discussed and demonstrated using data from the recent literature. This is
particularly important when the model and the data appear to be inconsistent. With the new method, one can
rigorously demonstrate that a nonlinear kinetic model with several adjustable rate parameters is inconsistent
with measured experimental data. The numerical method presented is a valuable tool in evaluating the validity
of a complex kinetics model.

1. Introduction

Kineticists frequently desire to validate or disprove a proposed
chemical reaction network by comparing it with experimental
data. Models for chemical kinetics experiments are usually
systems of nonlinear ordinary differential equations (ODEs) with
several unknown adjustable parameters,p, posed as an initial
value problem as shown in eq 1

where the vector of state variables,x, usually includes time-
dependent species concentrations or mass fractions and might
also include other quantities such as temperature or density if
they are time-varying during the experiment. The vectorsq and
p represent values that are constant throughout the process, such
as rate constants for an isothermal system at atmospheric
pressure. There are often dozens of numerical parametersq and
p; here, we assume that most of these parameters,q, are well-
established and can be safely held fixed, but some of them,p,
are significantly uncertain and should be adjusted to improve
the agreement between the model and the experiment.

Generally, the adjustable parameter vector,p, includes several
unknown rate constants but could also include unknown
molecular properties or initial conditions or both. Examples of
uncertain initial conditions that could be adjusted to obtain a
better fit are the temperature in a shock tube or the initial
concentration of radicals formed in a flash photolysis experi-
ment.

Once a kinetics model is formulated, the first question a
kineticist asks is whether the model is consistent with experi-
mental data. In other words, are there any physically reasonable
values ofp that would allow the kinetic model to match the
data within its limits of uncertainty? The usual approach to try
to answer this question is to varyp within a physically
reasonable range to try to minimize theø2(p) defined in eq 2

where d is the vector of data,m is the vector of model
predictions, andσ is the vector of standard deviations. The value
for di is the average overj replicate measurements,dij, such
thatdi ) (1/Nreplicates)∑jdij. The standard deviation used here is
the unbiased indicator associated with theø2 distribution. The

model prediction,mi(p), is usually a simple linear function of
the state variables at the time,ti, where the corresponding data
point,di, was measured, i.e.,mi(x(ti)), wherex(ti) is the solution
of eq 1 for the specified choice ofp.

An important value in theø2 distribution is the number of
degrees of freedom in the system,ν, defined as the number of
data points minus the number of adjustable parameters

For the large values ofν typical in kinetics, theø2 distribution
is sharply peaked near its expectation value,〈ø2〉 ) ν. If the
model and the data are consistent, we expect that eq 2 will give
a ø2 ≈ ν; if it gives a value significantly larger thanν, it is
unlikely that the data and the model are consistent. If the model
is correct, the probability that a data set would have a weighted
sum of squares value greater thanø2 is given by eq 5.

The Pr value is the measure of likelihood that the data is
consistent with the specified model, given the specified error,
σi. The implicit assumptions associated with using this measure
are that the model structure and all the numbers in the model
are exactly correct and all the deviations betweendi andmi(p)
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are due to normally distributed random errors. If we measure
data,d, that yield Pr(ø2) > 0.75, we have a lot of confidence
that the data are consistent with the model, but if Pr(ø2) < 0.25,
the data and the model are likely inconsistent. Intermediate
values of Pr suggest that there would be value in repeating the
experiment in order to reach an unambiguous conclusion.

If we could show that the Pr value is small, or correspondingly
that ø2(p) is large forall physically reasonable values of the
adjustable parametersp, then we could say the model is
inconsistent with the data, or equivalently that the data disproves
the model. The most obvious way to do this would be to find
the lowest possibleø2(p) over the entire physically reasonable
range of parameters. This can be accomplished by using an
optimization algorithm to find the minimum of theø2(p).

Many algorithms exist for finding the minimum of objective
functions such asø2. One of the best of these algorithms is the
Levenberg-Marquardt (LM)1,2 method. However, all of these
methods have difficulty relating kinetic data to nonlinear
chemical kinetic models for several reasons.

1. Usually several of the unknown parameters are correlated,
i.e., theø2(p) surface is typically very flat in some regions ofp
space, and in these regions, its Hessian is near-singular, making
it difficult for many methods to identify a minimum.

2. Experimental data often contain noise, which roughens the
objective function surface. These rough patches can trap an
optimization algorithm into a local minimum. That minimum,
however, may not be a global minimum ofø2(p) over the whole
parameter space.

Until recently, it was impossible to determine if the minimum
obtained from optimizing this class of problems was a local
minimum or a global minimum. In many situations, despite the
numerical problems, kineticists would nonetheless be able to
find a set of parameters that made the model consistent with
experimental data, i.e., Pr> 0.75, and immediately turn to
determining the range of parameters that give good fits, i.e.,
the uncertainties in the parameter values, as discussed exten-
sively in the literature.3-6

However, a kineticist that could not find a parameter set which
made the model consistent with experimental data would be
left in a quandary. Is the model an incorrect description of the
chemistry or did I just not find the correct set of fitting
parameters?

Here, we present the first numerical method which allows
one to find a global minimum ofø2(p) for nonlinear ODE IVP
models that do not have analytical solutions, and so conclusively
determine whether a proposed kinetic model is inconsistent with
a set of experimental data. The method is demonstrated using

data and a kinetic model drawn from a recent study7 of the
reaction of cyclohexadienyl radical with oxygen.

Being able to reliably identify global optima would be useful
in many problems that arise in physical chemistry. Because good
numerical methods for global optimization of nonconvex
problems were not available, the most common approach has
been to restrict oneself to models which yield convex (often
linear) optimization problems or to approximate the objective
function with a convex response surface, so that all local minima
are global minima.5,6,8This is probably one of the main reasons
that “textbook” models which lead to linear least-squares
optimizations are so popular. Unfortunately, many chemical
systems are in reality nonlinear and nonconvex, so that
approximations are required to make the resulting optimization
problems convex, and it can be difficult to bound the errors
introduced by these approximations. A popular approach which
does not approximate the model or the objective function is
multistart, a stochastic method where a large number of local
optimizations are performed from various initial guesses, in the
hope that at least one of them will hit the global optimum.9 In
practice, multistart and the convex approximation methods are
effective ways to find good fits for cases where the model and
the data are consistent. However, none of these methods are
guaranteed to find the best fit and, therefore, cannot disprove a
model with confidence.

Several global optimization methods exist for solving chemi-
cal engineering and kinetics problems.10,11 However these
methods require an explicit nonconvex algebraic model10,11and
cannot solve problems that can only be expressed as a system
of differential equations. Here, we present the first method
suitable for the common situation where the objective function
is only known implicitly, through the numerical solution of a
system of differential equations.

2. Theory and Implementation

A simple example of local and global minima is shown in
Figure 1. For an objective function that is convex, all local
minima are also global minima; thus, a local optimization
procedure will always find a global minimum. Most kinetic
models, however, lead to nonconvex least-squares problems,
or, as Figure 1 shows, problems containing a concave and a
convex portion. When an objective function contains both
concave and convex regions, suboptimal local minima can exist;
thus, a local optimization procedure may not always find a
global minimum.

The first algorithm guaranteed to find a global minimum was
created in the late 1960s by Falk and Soland13 and is called

Figure 1. A simple example of a convex and nonconvex function. All local minima of a convex function are also global minima. On the other
hand, a nonconvex function may exhibit suboptimal local minima (A) in addition to a global minimum (B).12
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branch-and-bound. What branch-and-bound does is subdivide
the region containing the feasible set into two separate regions.
The algorithm then determines an upper and lower bound on
the minima for each region. For example, in Figure 2, if the
upper bound on the minimum of the objective function (bold
curve) in region B is lower than the lower bound on the objective
function in region A, then region A is rejected because it cannot
contain a global minimum. Region B is then divided and the
process repeated, narrowing in on the region inp space where
a global minimum lies. Subdivision and evaluation of the upper
and lower bounds continue until the bounds converge to within
a specified tolerance on the global minimum.

For this algorithm to work, one must be able to determine
upper and lower bounds on the minimum in any subregion, and
the bounds must converge as the region is subdivided. Deter-
mining an upper bound on a global minimum is easy: choose
any pointpguessin the range, thenø2(pguess) is an upper bound
on the minimum ofø2(p). A tighter upper bound can found by
performing a standard optimization starting frompguessto find
a local minimum. Unfortunately, it is much more difficult to
determine provable lower bounds that tighten appropriately as
the region is subdivided. Performing a local optimization does
not guarantee a lower bound, since the region may contain
suboptimal local minima.

The success of the new algorithm used here comes from its
ability to construct convex relaxations ofø2(p) in any specified
subregion, Figure 2. A convex relaxation,c(p), is a curve that
is convex and underestimates the objective function at all points

Becausec(p) is convex, if you find a local minimum atpmin, it
is guaranteed to be a global minimum ofc

Combining the two produces the following expression

Thus, any local minimum of the convex relaxation is a
rigorous lower bound, which can be used in the branch-and-
bound algorithm.

The hard part is to constructc(p) so that it is guaranteed to
be a convex relaxation ofø2(p), even thoughø2(p) is only
evaluated via the numerical solution of a system of nonlinear
ODEs. Here, we give a brief synopsis of how this is done. All
the details, with proofs, are given in refs 12 and 14-16.
Information on global optimization in general can be found in
the excellent book by Horst and Tuy.17

The procedure for constructing convergent convex relaxations
for problems with nonlinear ODEs embedded involves a
sequence of bounding operations. First, it is necessary to
estimate the image of the parameter set under the solution of
the ODEs, i.e., find pointwise in timexL(t) andxU(t) such that

the so-calledimplied state bounds. These estimates can be
obtained via the classical theory of differential inequalities,18

but if the ODEs are non-quasimonotone,18 these estimates can
be very weak. In ref 14, we show how a priori knowledge
concerning physical bounds and solution invariants (e.g., overall
mass conservation) can be incorporated into the differential
inequalities in order to compute much tighter implied state
bounds.

Once bounds forx andp are known, it is possible to construct,
pointwise in time, convex and concave relaxations of the right-
hand sides (RHSs) of eq 1 on the sets defined by the time
varying bounds. Because the RHSs are typically elementary
functions, established methods for constructing convex relax-
ations, such as that of ref 19, can be employed for this purpose.
From the properties of convex and concave functions, any
linearizations to these convex and concave functions will under-
and overestimate the convex and concave relaxations, respec-
tively. Hence, affine functions, functions of the formc(t, p) )
M(t)p + n(t), that under- and overestimate the RHSs of eq 1
on the bounding set can be constructed. These affine functions,
in conjunction with the theory of differential inequalities,18 are
used to construct the RHSs of linear ODEs whose solutions
under- and overestimate, respectively, the solution of eq 1 for
all values ofp in the parameter set shown in eq 9. As the upper
and lower bounds on the range ofp narrow, they converge to
x(t, p). With bounds onx(t, p), it is now possible to construct
bounds onø2(p), becauseø2(p) is a functional ofx. Because
the solutions of these linear ODEs are pointwise in time affine
in p,16 these solutions of the linear ODEs can be used in
conjunction with the results of refs 19 and 16, to construct
convex relaxations of point and integral form functionals defined
in terms of functions of the state variables.14 ø2(p) is an example
of a point form function (multiple points).

In addition, as the parameter set employed in this construction
shrinks to a point, both the state bounds and the convex
relaxations will converge to the solution of eq 1 and the original
nonconvex functional, respectively.

The global optimizer (GDOC) forø2(p) consists of many
distinct parts: a branch-and-bound algorithm, a local optimizer,
a numerical integrator, software for constructing the convex
relaxations, and a residual evaluator, which is used to evaluate
the right-hand sides (RHSs) of the ODEs. The branch-and-bound
performed on the parameter set is done using an in-house
branch-and-bound library, libBandB version 3.2.20 Local opti-
mization is performed using NPSOL version 5.0.21 NPSOL is
a proprietary package and does not come with the GDOC
distribution; instead, SLSQP, a free optimization code is
included. Numerical integration is performed using an extended
discontinuity-locked version of CVODES,22 which is discussed
in ref 12. Residual evaluation is performed via code generated

Figure 2. An example of a convex relaxation of a nonconvex function.
The large parabola represents the first convex relaxation of the function.
The region is then bisected at the convex minimum to form regions A
and B. The relaxation is repeated to find new lower bounds for each
region. By finding a pointp in region B wheref(p) is less than the
convex lower bound for region A, one can show that a global minimum
cannot exist in region A. Region A can now be discarded from the
search.

c(p) e ø2(p) ∀ p ∈ [p0, p1] (6)

c(pmin) e c(p) ∀ p ∈ [p0, p1] (7)

c(pmin) e ø2(p) ∀ p ∈ [p0, p1] (8)

xL(t) e x(t, p) e xU(t), ∀ p ∈ [p0, p1] (9)
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by the compiler component of the GDOC package.12 Together,
these components form the global dynamic optimization code
(GDOC) used in this work. To solve parameter estimation
problems, the end user needs only to define a problem in the
GDOC input language, which the GDOC package then parses.

The GDOC global optimization package and the example
cases are available for download over the Internet at http://
yoric.mit.edu/gdoc/. All of the details, including information
on obtaining key numerical packages such as NPSOL and
CVODES, which are neither developed nor distributed by
the authors, are explained at http://yoric.mit.edu/gdoc/
#WhatIsGDOC. The algorithm appears to scale as a low power
of the number of state variables but scales exponentially with
the number of adjustable parameters. Hence, even models
involving large reaction mechanisms with many reacting species
can be handled, but only a relatively small number of parameters
can be optimized simultaneously.

3. Case Study: Transient Absorption Experiments and
Model

To illustrate the utility of the global optimization technique
discussed in this paper, GDOC was applied to a parameter
estimation problem studied extensively by Taylor et al.7 They
measured the reaction rate of resonantly stabilized cyclohexa-
dienyl radicals with molecular oxygen in cyclohexane solvent
using laser flash photolysis. The reaction appears to be first
order in oxygen concentration, but there is a large discrepancy
between the rate constants for decay of the cyclohexadienyl
radical measured in the gas phase23,24 and in solvents,25,26 and
several different kinetic models have been proposed to interpret
the experimental findings. Many data traces were measured and
compared with various kinetic models in the course of the wide-
ranging study of Taylor et al.; those interested in the chemistry
should see the original paper and the doctoral thesis.7,27 Here,
we focus on two particular data traces measured in the course
of that work, to see whether they can disprove one of the
proposed kinetic models.

The first data trace, Figure 3, was measured by photolyzing
a 298 K solution containing 0.4 M 1,4-cyclohexadiene and 0.1
M di-tert-butyl peroxide in equilibrium with 0.2 bar O2 and
0.8 bar Ar. The second data trace, Figure 4, was measured under
identical conditions but at 323 K. The spectrometer averages
30 individual laser shots, then sends the data set to the computer.

Equation 2 treats each of these data points as if they are single
shots and not the result of 30 replicates. The means of the data
are, thus, well-determined, and the standard deviations are
slightly overestimated by this procedure. The laser flash
photolyzes the peroxide to formtert-butoxy radicals, which
rapidly abstract an H atom from the cyclohexadiene to form
cyclohexadienyl radicals (c-C6H7). c-C6H7 concentration is then
probed using the absorbance of 316 nm light.Ortho andpara-
cyclohexadienylperoxy radicals are formed in the reaction and
also absorb weakly at 316 nm. The measured absorbance,d, is
modeled using eq 10.

The proposed mechanism which Taylor et al.7,27 were trying
to disprove with the data is shown in Table 1. In this proposed
mechanism, reactions 1, 4, and 5 were assumed to be irrevers-
ible, while reactions 2 and 3 were treated as reversible. In the
fits, the rate constants were constrained to lie within a physically
reasonable range.

There are too many parameters in the model to determine
them all from one or even several transient absorption data
traces. Taylor et al.7,27 fixed several parameters on the basis of
prior literature information or their own measurements or
calculations, as shown in Tables 1 and 2. For example, the rate
constants for reactions 1 and 5 were taken from the literature,28,29

and the reverse rate constants for reactions 2 and 3 were set
using equilibrium constants they computed (on the basis in part
on photoacoustic calorimetry experiments in the literature30).
In various ways, they measuredε, l, and the initial concentration

Figure 3. Globally and locally optimal fits toc-C6H7 absorption at
298 K with three adjustable parameters. Error bars shown are(σi, and
for clarity, only every fifth data point is shown. The local optimum (ø2

) 500) is not significant at the 25% confidence level, while a global
optimum (ø2 ) 128) is consistent with the data (>99% confidence). In
a previous work, Taylor et al.7 used local optimization to fit these data
and were unable to find a parameter set that provided a significant fit.
The GDOC program, however, found a global solution for the three
parameter fit which shows their model to be statistically significant.

Figure 4. Globally and locally optimal solutions to a fit ofc-C6H7

absorption at 323 K with three adjustable parameters. Error bars shown
are(σi, and for clarity, only every fifth data point is shown. The local
optimum (ø2 ) 500) corresponds to a 5% level of confidence in the
model fit, while the global optimum (ø2 ) 476) corresponds to only a
16% level of confidence. Since the GDOC program was unable to find
a global optimum with a level of confidence greater than the cutoff of
25%, we can reject the model fit of the data. There are no sets of
parameters which will improve the fit.

TABLE 1: Proposed Kinetic Modela

no. reaction

k298

[M - 1µs-1

or µs-1]

1 (CH3)3CO + 1,4-C6H8 f c-C6H7 + (CH3)3COH 53
2 c-C6H7 + O2 h p-C6H7OO [1, 1200]
3 c-C6H7 + O2 h o-C6H7OO [1, 1200]
4 o-C6H7OO f C6H6 + HO2 [0.001, 100]
5 2c-C6H7 f products 1200

a k1 and k5 were fixed.k2, k3, andk4 were adjusted to fit the data
within the stated bounds.

mi ) (εc-C6H7
[c-C6H7](ti) + εortho[o-C6H7OO](ti) +

εpara[p-C6H7OO](ti))l (10)
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of 1,4-C6H8, and they used the published31 Henry’s law
coefficient for O2 along with their flow measurements to
determine its concentration.7,27 In this model, it is assumed that
the only radical formed by the laser flash is (CH3)3CO, i.e.,
[c-C6H7]0 ) [C6H7OO]0 ) [HO2]0 ) 0. The concentration of
(CH3)3CO was determined using the known absorption cross-
section of DTBP32 and a measurement of the UV light power
density exiting the reaction cell. This left three adjustable
parameters to be determined in the least-squares fitting proce-
dure: k2, k3, andk4. The dynamic model has six important state
variables: [(CH3)3CO], [1,4-C6H8], [c-C6H7], [O2], [o-C6H7OO],
and [p-C6H7OO]; these are the elements ofx(t).

The estimates for the variation in the data were taken by
comparing three different experimental runs taken under identi-
cal conditions for each temperature. The average and standard
deviations (eq 3) were used to create the data points with error
bars in Figures 3 and 4. The error bars drawn consist of one
standard deviation on either side of the data point on they-axis.

The tolerances used by GDOC to search for a global optimum
were RTOL ) 10-4 and ATOL ) 10-5. For this particular
problem, the absolute tolerance was the active stopping condi-
tion. The tolerance for NPSOL was set to 10-5, and the ATOL
for CVODES was set to 10-10. A multistart analysis33 showed
that these two cases have hundreds of local minima. However,
many of these local minima have similarp and objective (ø2)
values. Presumably, they arise because the noise in the data,d,
roughens theø2(p) surface. From an analysis of the roughness,12

we set the objective function tolerance for the branch-and-bound
procedure equal to 10 (the smallestø2 values are O(100)).

4. Results

In refs 7 and 27, experimental data were compared to several
different proposed kinetic models using conventional optimiza-
tion methods to find local minima. The goal was to identify
kinetic model(s) consistent with a large and varied set of
experimental and theoretical information on the reactions of
cyclohexadienyl radical. For clarity, we focus on an apparently
simple subproblem that needs to be solved in order to achieve
that goal: fitting a kinetic data trace to a single model.

For the data set shown in Figure 3, the best local fit obtained
previously7,27 using the kinetic model detailed in Table 1 had a
significant discrepancy from the experimental data. The authors
assumed that this poor fit indicated that something was wrong
with the structure of the model and published several specula-
tions about possible failings in the model which could rationalize
the discrepancy.7,27 However, a globally optimized fit obtained
in the present work fits the data set very well with aø2 value
of 128, as shown in Figure 3. The model actually is consistent
with the data, and there is no discrepancy that needs to be
explained! The authors of refs 7 and 27 were misled, because

their fitting program converged to a local minimum on theø2

surface significantly different from the true global minimum.
The previous study did not identify a global optimum of the

objective function, since a good initial guess is needed to find
the best overall fitted parameters. With the multistart algorithm,
over 1000 different nonlinear local optimizations were run from
random initial guesses spanning the physical boundaries of the
parameters. Only 4 of the initial guesses found a global
optimum, and1/3 of the guesses led to poor fits (Pre 0.25). A
histogram of the 1000 multistart optima found is shown in
Figure 5.

A second data set from the same transient absorption study,7,27

measured at a higher temperature than the data in Figure 3, is
displayed in Figure 4. Again, the fit obtained using the
conventional local least-squares minimization approach does not
fall within the experimental error bars. By using global
optimization, the fit improves and has aø2 value of 476, which
corresponds to a probability of 0.16. Even with this best possible
choice for the three parameters, the deviations between the
model and the data are significantly larger than expected from
the error bars on the data. We can conclude with a high degree
of confidence that the model is not consistent with the data for
any choice of the parameters.

Again, by using the multistart algorithm, 1000 local optimiza-
tions of the model parameters were performed against the data
shown in Figure 4. Figure 6 shows that finding the most
significant optima is much more difficult in comparison to the
298 K data. The chances of randomly finding the best possible
fit to the data are, literally, 1 in 1000.

There are of course many possible reasons why a model could
be inconsistent with data, and this particular model is based on
quite a large number of assumptions. In this particular case, it
seems most likely that the heats of reaction for steps 2 and 3
computed in refs 7 and 27 are slightly off, causing the computed
equilibrium constantsK2 andK3 to have the wrong temperature
dependence. Taylor et al.7,27 noted that their computed heats of
reaction could be in error by a few kcal/mol, more than enough
to resolve the discrepancy in Figure 4. As discussed extensively
in refs 7 and 27, there are many other possible problems with
the model in Table 1. Even if it happened to perfectly match
all the available data, that would notproVe it was correct. What

TABLE 2: Model Parameters Which Were Not Adjusted in
the Fit from Refs 7 and 27

model parameter 298 K 323 K

εc-C6H7 2100 M-1 cm-1 2100 M-1 cm-1

εo-C6H7OO, εp-C6H7OO 200 M-1 cm-1 200 M-1 cm-1

l 0.7 cm 0.7 cm
[1,4-C6H8]0 0.400 M 0.400 M
[(CH3)3CO]0 1.53× 10-4 M 1.53× 10-4 M
[O2]0 0.0019 M 0.0014 M
[c-C6H7]0, [o-C6H7OO]0,

[p-C6H7OO]0
0 M 0 M

K2 ) k2/k-2 2081 M-1 385 M-1

K3 ) k3/k-3 4162 M-1 770 M-1

k1 53 M-1 µs-1 73 M -1 µs-1

k5 1200 M-1 µs-1 1750 M-1 µs-1
Figure 5. Histogram of the local minima found from nonlinearø2 fits
to the data in Figure 3. Each of the 1000 different local optimizations
performed began from a random initial guess spanning the physically
reasonable range of the adjustable parameters. The local optima were
binned on the basis of the probability the model is consistent with the
data, i.e., by the level of confidence. At 298 K, many different parameter
sets exist which provide significant fits (Pr> 0.75); however, there is
a reasonable likelihood of finding fits that are not consistent with the
data. Only 4 of the 1000 initial guesses converged to a globally optimal
best fit.
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is new is that there is a method for rigorouslydisproVing a
chemical kinetic model.

5. Conclusions

A computer program has been developed that is suitable for
finding a global solution of the most common type of least-
squares problem that arises in chemical kinetics, based on the
recent breakthroughs in global dynamic optimization by Singer
and Barton.14-16 Using this new mathematical method, one can
for the first time rigorously determine whether a model with
several adjustable parameters can be made to fit kinetic data,
or whether it is fundamentally inconsistent with the data. The
model has been applied to two transient absorption traces
measured in a recent study of cyclohexadienyl radical chemistry.
In the 298 K example, the new method showed that the model
was consistent with the data. However, it was proven that a
globally optimum set of parameters was not consistent with the
data at 323 K. This new addition to the kineticists’ numerical
tool kit is expected to prove useful for properly comparing
models and data. The software described here and the associated
documentation has been made available via the Internet at http://
yoric.mit.edu/gdoc.
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Figure 6. Histogram of the local minima found from nonlinearø2 fits
to the data in Figure 4. Each of the 1000 different local optimizations
performed began from a random initial guess spanning the physically
reasonable range of the adjustable parameters. The local optima were
binned on the basis of the probability the model is consistent with the
data, i.e., by the level of confidence. Only 1 of the 1000 initial guesses
converged to a globally optimal best fit. The best fit in this example
has a Pr(ø2) ) 0.163, which indicates that the model and the data are
inconsistent.
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