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Global Dynamic Optimization for Parameter Estimation in Chemical Kinetics
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We present the first method guaranteed to find the best possible least-sgdpfies{ experimental data by

a nonlinear kinetic model. Several important advantages of knowing with certainty the best possible fit rather
than a locally optimum fit are discussed and demonstrated using data from the recent literature. This is
particularly important when the model and the data appear to be inconsistent. With the new method, one can
rigorously demonstrate that a nonlinear kinetic model with several adjustable rate parameters is inconsistent
with measured experimental data. The numerical method presented is a valuable tool in evaluating the validity
of a complex kinetics model.
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Kineticists frequently desire to validate or disprove a proposed at ;
chemical reaction network by comparing it with experimental
data. Models for chemical kinetics experiments are usually where d is the vector of datam is the vector of model
systems of nonlinear ordinary differential equations (ODEs) with predictions, and is the vector of standard deviations. The value
several unknown adjustable parametgsposed as an initial  for d; is the average overreplicate measurements;, such
value problem as shown in eq 1 thatd; = (L/Nrepiicated jdij. The standard deviation used here is
the unbiased indicator associated with gedistribution. The
& —ftx.a.n x(t)=x1a,p) &) ‘

1 Nreplicates

0 = N Z (d; — di)2 )
where the vector of state variables, usually includes time- Nrep“cates— 1 £
dependent species concentrations or mass fractions and might o ) ) . )
also include other quantities such as temperature or density ifmodel predictionm(p), is usually a simple linear function of
they are time-varying during the experiment. The vectpasd thg state variables at the_ timg,where the corr_espondmg_data
p represent values that are constant throughout the process, sucROINt, di, was measured, i.en(x(ti)), wherex(t) is the solution
as rate constants for an isothermal system at atmosphericof €d 1 for the specified choice @
pressure. There are often dozens of numerical parangters An important valug in thes? d|str|bu_t|on is the number of
p: here, we assume that most of these parameteese well- degrees_ of fre'edom in the system,de_flned as the number of
established and can be safely held fixed, but some of tipem, data points minus the number of adjustable parameters
are significantly uncertain and should be adjusted to improve
the agreement between the model and the experiment.

Generally, the adjustable parameter veqtpmcludes several  For the large values of typical in kinetics, the? distribution
unknown rate constants but could also include unknown is sharply peaked near its expectation valié[l= v. If the
molecular properties or initial conditions or both. Examples of model and the data are consistent, we expect that eq 2 will give
uncertain initial conditions that could be adjusted to obtain a a y2 ~ v; if it gives a value significantly larger tham, it is
better fit are the temperature in a shock tube or the initial unlikely that the data and the model are consistent. If the model
concentration of radicals formed in a flash photolysis experi- is correct, the probability that a data set would have a weighted
ment. sum of squares value greater thgnis given by eq 5.

Once a kinetics model is formulated, the first question a )
kineticist asks is whether the model is consistent with experi- L F(Z Z_)

. v[2—1 t2 ’
mental data. In other words, are there any physically reasonable Pr(xz wat € dt = 22 (5)
values ofp that would allow the kinetic model to match the %2 2,,/21,(2) F(Z)
2

data within its limits of uncertainty? The usual approach to try 2
to answer this question is to varg within a physically ) o _
consistent with the specified model, given the specified error,
- i - oi. The implicit assumptions associated with using this measure
* Corresponding author: whgreen@mit.edu. .
* Present Address: ExxonMobil Upstream Research Company, Houston, &€ that the model structure and 3” Fhe numbers in the model
TX. are exactly correct and all the deviations betwdeand m(p)

V= Ndata_ Nparameters (4)
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Figure 1. A simple example of a convex and nonconvex function. All local minima of a convex function are also global minima. On the other
hand, a nonconvex function may exhibit suboptimal local minima (A) in addition to a global minimufd (B).

are due to normally distributed random errors. If we measure data and a kinetic model drawn from a recent sfudfy/the
data,d, that yield Prg?) > 0.75, we have a lot of confidence reaction of cyclohexadienyl radical with oxygen.
that the data are consistent with the model, but ifPr& 0.25, Being able to reliably identify global optima would be useful
the data and the model are likely inconsistent. Intermediate in many problems that arise in physical chemistry. Because good
values of Pr suggest that there would be value in repeating thenumerical methods for global optimization of nonconvex
experiment in order to reach an unambiguous conclusion. problems were not available, the most common approach has
If we could show that the Pr value is small, or correspondingly been to restrict oneself to models which yield convex (often
that y?(p) is large forall physically reasonable values of the linear) optimization problems or to approximate the objective
adjustable parameters, then we could say the model is function with a convex response surface, so that all local minima
inconsistent with the data, or equivalently that the data disprovesare global minim&:68This is probably one of the main reasons
the model. The most obvious way to do this would be to find that “textbook” models which lead to linear least-squares
the lowest possiblg?(p) over the entire physically reasonable optimizations are so popular. Unfortunately, many chemical
range of parameters. This can be accomplished by using ansystems are in reality nonlinear and nonconvex, so that
optimization algorithm to find the minimum of theX(p). approximations are required to make the resulting optimization
Many algorithms exist for finding the minimum of objective  problems convex, and it can be difficult to bound the errors
functions such ag? One of the best of these algorithms is the introduced by these approximations. A popular approach which
Levenberg-Marquardt (LM)-2 method. However, all of these  does not approximate the model or the objective function is
methods have difficulty relating kinetic data to nonlinear multistart, a stochastic method where a large number of local
chemical kinetic models for several reasons. optimizations are performed from various initial guesses, in the
1. Usually several of the unknown parameters are correlated,hope that at least one of them will hit the global optim&im.
i.e., they(p) surface is typically very flat in some regions pf practice, multistart and the convex approximation methods are
space, and in these regions, its Hessian is near-singular, makingffective ways to find good fits for cases where the model and
it difficult for many methods to identify a minimum. the data are consistent. However, none of these methods are
2. Experimental data often contain noise, which roughens the guaranteed to find the best fit and, therefore, cannot disprove a
objective function surface. These rough patches can trap anmodel with confidence.

optimization algorithm into a local minimum. That minimum, Several global optimization methods exist for solving chemi-
however, may not be a global minimum;g{p) over the whole cal engineering and kinetics probleAdd! However these
parameter space. methods require an explicit nonconvex algebraic mdéand

Until recently, it was impossible to determine if the minimum cannot solve problems that can only be expressed as a system
obtained from optimizing this class of problems was a local of differential equations. Here, we present the first method
minimum or a global minimum. In many situations, despite the suitable for the common situation where the objective function
numerical problems, kineticists would nonetheless be able tois only known implicitly, through the numerical solution of a
find a set of parameters that made the model consistent with system of differential equations.
experimental data, i.e., Pr 0.75, and immediately turn to
determining the range of parameters that give good fits, i.e.,
the uncertainties in the parameter values, as discussed exten- A simple example of local and global minima is shown in
sively in the literaturé 6 Figure 1. For an objective function that is convex, all local

However, a kineticist that could not find a parameter set which minima are also global minima; thus, a local optimization
made the model consistent with experimental data would be procedure will always find a global minimum. Most kinetic
left in a quandary. Is the model an incorrect description of the models, however, lead to nonconvex least-squares problems,
chemistry or did | just not find the correct set of fitting or, as Figure 1 shows, problems containing a concave and a
parameters? convex portion. When an objective function contains both

Here, we present the first numerical method which allows concave and convex regions, suboptimal local minima can exist;
one to find a global minimum of?(p) for nonlinear ODE IVP thus, a local optimization procedure may not always find a
models that do not have analytical solutions, and so conclusively global minimum.
determine whether a proposed kinetic model is inconsistent with  The first algorithm guaranteed to find a global minimum was
a set of experimental data. The method is demonstrated usingcreated in the late 1960s by Falk and Soldrahd is called

2. Theory and Implementation
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. A Line of Bisection beTgecrcl)?lrd part is to_constguc(p) so that it is gzuara_mteed to

vex relaxation of%(p), even thoughy?(p) is only
evaluated via the numerical solution of a system of nonlinear
ODEs. Here, we give a brief synopsis of how this is done. All
the details, with proofs, are given in refs 12 and-14.
Information on global optimization in general can be found in
the excellent book by Horst and Tdy.

‘\\ \Second /

ggg‘)’zion y The procedure for constructing convergent convex relaxations
§ for problems with nonlinear ODEs embedded involves a
A : sequence of bounding operations. First, it is necessary to
,~ First § estimate the image of the parameter set under the solution of
Pc{gl?ex. : the ODEs, i.e., find pointwise in time-(t) andxY(t) such that
‘ xation !
. PR x(t) = x(t,p) = x(t), Opepy Py 9)

Figure 2. An example of a convex relaxation of a nonconvex function. . . .
The large parabola represents the first convex relaxation of the function. the so-calledimplied state boundsThese estimates can be

The region is then bisected at the convex minimum to form regions A Obtained via the classical theory of differential inequalities,
and B. The relaxation is repeated to find new lower bounds for each but if the ODEs are non-quasimonotoffehese estimates can

region. By finding a poinfp in region B wheref(p) is less than the be very weak. In ref 14, we show how a priori knowledge

convex lower bound for region A, one can show that a global minimum  concerning physical bounds and solution invariants (e.g., overalll
cannot exist in region A. Region A can now be discarded from the 1455 conservation) can be incorporated into the differential
search. inequalities in order to compute much tighter implied state

branch-and-bound. What branch-and-bound does is subdividePounds. . ,

the region containing the feasible set into two separate regions. Once bounds fox andp are known, itis possible to construct,
The algorithm then determines an upper and lower bound on pointwise in time, convex and concave relaxations of the right-
the minima for each region. For example, in Figure 2, if the hand sides (RHSs) of eq 1 on the sets defined by the time
upper bound on the minimum of the objective function (bold V&Ying bounds. Because the RHSs are typically elementary
curve) in region B is lower than the lower bound on the objective fu_nctlons, established methods for constructing convex relax-
function in region A, then region A is rejected because it cannot 8lions, such as that of ref 19, can be employed for this purpose.
contain a global minimum. Region B is then divided and the From the properties of convex and concave functions, any
process repeated, narrowing in on the regiop Bpace where linearizations to these convex and concave functions will under-
a global minimum lies. Subdivision and evaluation of the upper @nd overestimate the convex and concave relaxations, respec-

and lower bounds continue until the bounds converge to within tvely. Hence, affine functions, functions of the fortt, p) =
a specified tolerance on the global minimum. M(t)p + n(t), that under- and overestimate the RHSs of eq 1

For this algorithm to work, one must be able to determine ©N the bounding set can be constructed. These affine functions,
upper and lower bounds on the minimum in any subregion, and in conjunction with the theory of d_ifferential inequaliti€sare _
the bounds must converge as the region is subdivided. Deter-USed to construct the RHSs of linear ODEs whose solutions
mining an upper bound on a global minimum is easy: choose under- and overestimate, respectively, th.e solution of eq 1 for
any pointpguessin the range, thew?(pyues) is an upper bound all values ofp in the parameter set shown in eq 9. As the upper
on the minimum of(p). A tighter upper bound can found by and Iowe_r bounds on the range pharrow, tr_\ey converge to
performing a standard optimization starting fr@guessto find X(t, p). With bounds orx(t, p), it is now possible to construct
a local minimum. Unfortunately, it is much more difficult to  20unds ony?(p), because;*(p) is a functional ofx. Because
determine provable lower bounds that tighten appropriately as the solutions of these linear ODEs are pointwise in time affine
the region is subdivided. Performing a local optimization does N P:*° these solutions of the linear ODEs can be used in

not guarantee a lower bound, since the region may containconjunction with the results of refs 19 and 16, to construct
suboptimal local minima. convex relaxations of point and integral form functionals defined

The success of the new algorithm used here comes from itsi terms of functions of the state variablés(p) is an example

ability to construct convex relaxations gi(p) in any specified ~ Of & point form function (multiple points). _
subregion, Figure 2. A convex relaxatiaxp), is a curve that In addition, as the parameter set employed in this construction

is convex and underestimates the objective function at all points SNrinks to a point, both the state bounds and the convex
relaxations will converge to the solution of eq 1 and the original

< 2 nonconvex functional, respectively.
op) =2 Opelpopl ©) The global optimizer (GDOC) foy?(p) consists of many
Because(p) is convex, if you find a local minimum aimin, it distinct parts: a branch-and-bound algorithm, a local optimizer,
is guaranteed to be a global minimum of a numerical integrator, software for constructing the convex
relaxations, and a residual evaluator, which is used to evaluate
c(Pmin) = c(P) T pe[pypil @) the right-hand sides (RHSs) of the ODEs. The branch-and-bound
performed on the parameter set is done using an in-house
Combining the two produces the following expression branch-and-bound library, libBandB version 3%A.ocal opti-
mization is performed using NPSOL version 3'0NPSOL is
c(Prmin) < %°(®) T p € [Py Pl (8) a proprietary package and does not come with the GDOC

distribution; instead, SLSQP, a free optimization code is

Thus, any local minimum of the convex relaxation is a included. Numerical integration is performed using an extended
rigorous lower bound, which can be used in the branch-and- discontinuity-locked version of CVODEZ which is discussed

bound algorithm. in ref 12. Residual evaluation is performed via code generated
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Figure 3. Globally and locally optimal fits ta-CsH; absorption at
298 K with three adjustable parameters. Error bars shows-areand

for clarity, only every fifth data point is shown. The local optimuya (

= 500) is not significant at the 25% confidence level, while a global
optimum §? = 128) is consistent with the data 99% confidence). In

a previous work, Taylor et dlused local optimization to fit these data
and were unable to find a parameter set that provided a significant fit.
The GDOC program, however, found a global solution for the three
parameter fit which shows their model to be statistically significant.

by the compiler component of the GDOC packag&ogether,

Singer et al.
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Figure 4. Globally and locally optimal solutions to a fit afCsH-
absorption at 323 K with three adjustable parameters. Error bars shown
are=+a;, and for clarity, only every fifth data point is shown. The local
optimum §? = 500) corresponds to a 5% level of confidence in the
model fit, while the global optimumyg = 476) corresponds to only a
16% level of confidence. Since the GDOC program was unable to find
a global optimum with a level of confidence greater than the cutoff of
25%, we can reject the model fit of the data. There are no sets of
parameters which will improve the fit.

TABLE 1: Proposed Kinetic Model?

these components form the global dynamic optimization code
(GDOC) used in this work. To solve parameter estimation
problems, the end user needs only to define a problem in the

k298
M~ lust
orus

no. reaction

GDOC input language, which the GDOC package then parses.
The GDOC global optimization package and the example
cases are available for download over the Internet at http://
yoric.mit.edu/gdoc/. All of the details, including information
on obtaining key numerical packages such as NPSOL and
CVODES, which are neither developed nor distributed by
the authors, are explained at http://yoric.mit.edu/gdoc/
#WhatlsGDOC. The algorithm appears to scale as a low power
of the number of state variables but scales exponentially with

the number of adjustable parameters. Hence, even models®

involving large reaction mechanisms with many reacting species
can be handled, but only a relatively small number of parameters
can be optimized simultaneously.

3. Case Study: Transient Absorption Experiments and
Model

To illustrate the utility of the global optimization technique
discussed in this paper, GDOC was applied to a parameter
estimation problem studied extensively by Taylor et @hey
measured the reaction rate of resonantly stabilized cyclohexa-
dienyl radicals with molecular oxygen in cyclohexane solvent
using laser flash photolysis. The reaction appears to be first
order in oxygen concentration, but there is a large discrepancy
between the rate constants for decay of the cyclohexadienyl
radical measured in the gas ph&séand in solvent3>26and

1 (CHy)sCO+ 1,4-GHg— c-CgH7 + (CH3)sCOH 53

2 ¢-CgH;7 + O, = p-CeH;00 [1, 1200]

3 ¢-CgH7 + O, = 0-CeH;00 [1, 1200]

4 0-CeH/00— CgHs + HO; [0.001, 100]
5 2c¢-CgH; — products 1200

ak; andks were fixed.k;, ks, andk, were adjusted to fit the data
within the stated bounds.

Equation 2 treats each of these data points as if they are single
hots and not the result of 30 replicates. The means of the data
are, thus, well-determined, and the standard deviations are
slightly overestimated by this procedure. The laser flash
photolyzes the peroxide to formert-butoxy radicals, which
rapidly abstract an H atom from the cyclohexadiene to form
cyclohexadienyl radical€{CgH7). c-CgH7 concentration is then
probed using the absorbance of 316 nm lighttho andpara-
cyclohexadienylperoxy radicals are formed in the reaction and
also absorb weakly at 316 nm. The measured absorbenise,
modeled using eq 10.

M = (€ ,1C-CeHA(t) + €6ind 0-CeH,O0](t) +
€pard P-CeH,O0](H)! (10)

The proposed mechanism which Taylor et-#were trying
to disprove with the data is shown in Table 1. In this proposed

several different kinetic models have been proposed to interpretmechanism, reactions 1, 4, and 5 were assumed to be irrevers-
the experimental findings. Many data traces were measured andble, while reactions 2 and 3 were treated as reversible. In the
compared with various kinetic models in the course of the wide- fits, the rate constants were constrained to lie within a physically
ranging study of Taylor et al.; those interested in the chemistry reasonable range.
should see the original paper and the doctoral thHeXislere, There are too many parameters in the model to determine
we focus on two particular data traces measured in the coursethem all from one or even several transient absorption data
of that work, to see whether they can disprove one of the traces. Taylor et a2’ fixed several parameters on the basis of
proposed kinetic models. prior literature information or their own measurements or
The first data trace, Figure 3, was measured by photolyzing calculations, as shown in Tables 1 and 2. For example, the rate
a 298 K solution containing 0.4 M 1,4-cyclohexadiene and 0.1 constants for reactions 1 and 5 were taken from the liter&#ife,
M di-tert-butyl peroxide in equilibrium with 0.2 bar £and and the reverse rate constants for reactions 2 and 3 were set
0.8 bar Ar. The second data trace, Figure 4, was measured undeusing equilibrium constants they computed (on the basis in part
identical conditions but at 323 K. The spectrometer averageson photoacoustic calorimetry experiments in the liter@ire
30 individual laser shots, then sends the data set to the computerln various ways, they measured, and the initial concentration
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TABLE 2: Model Parameters Which Were Not Adjusted in 1000 ¢ T T oy
the Fit from Refs 7 and 27 E E
model parameter 298 K 323K [
€c—CgHr 2100 Mtcm™?! 2100 Micm?t . 100 -
€0-CgH700; €p—CgH700 200 Mtem™t 200 M1cem? g E ]
0.7 cm 0.7 cm 5, F ]
[1,4-CsHslo 0.400 M 0.400 M 2 r
[(CH3)sCOJo 1.53x 104 M 153 x 104 M SR T £
[O2]o 0.0019 M 0.0014 M E E
[C-C6H7]o, [O-CeH7OO]o, oM oM r
[p-C6H700]o [
Ko = kolk-» 2081 Mt 385 Mt =
Ks = kg/k_3 4162 M1 770 M1 0 01 02 03 04 05 06 07 08 09 1
ke 53 M 1ust 73Mtust Probablity Value
ks 1200 Mtus™ 1750 Mus™ Figure 5. Histogram of the local minima found from nonlinegrfits
. to the data in Figure 3. Each of the 1000 different local optimizations
of 1,4-GHg, and they used the publisi&dHenry’s law performed began from a random initial guess spanning the physically

coefficient for Q along with their flow measurements to reasonable range of the adjustable parameters. The local optima were
determine its concentratidi?’ In this model, it is assumed that ~ binned on the basis of the probability the model is consistent with the
the only radical formed by the laser flash is (€O, i.e., data, i.e., by the level of confidence. At 298 K, many different parameter

_ _ _ _ - sets exist which provide significant fits (Pr 0.75); however, there is
[¢-CeH7]o = [CeH00) = [HOzJo = 0. The concentration of %o Co e Tikelihood of finding fits that are not consistent with the

(CH3)sCO was determined using the known absorption Cross- yata only 4 of the 1000 initial guesses converged to a globally optimal
section of DTBP2 and a measurement of the UV light power pest fit.

density exiting the reaction cell. This left three adjustable

parameters to be determined in the least-squares fitting proce-their fitting program converged to a local minimum on tife
dure: ky, ks, andks. The dynamic model has six important state - syrface significantly different from the true global minimum.
variables: [(CH)sCO], [1,4-GHe], [c-CeH], [Oz], [0-CeH-00], The previous study did not identify a global optimum of the
and p-CeH700]; these are the elements x(b). objective function, since a good initial guess is needed to find

The estimates for the variation in the data were takgn by the best overall fitted parameters. With the multistart algorithm,
comparing three different experimental runs taken under identi- ver 1000 different nonlinear local optimizations were run from

gzl\/f;[ir:)dr:tslo(gs g))r\z:rcg Ji? dpfc:a::trtjter:fe-l-tuz ?élgag;ne;g%vifg?gr andom initial guesses spanning the physical boundaries of the
bars in Fi urqes 3 and 4. The error bars drawr?consist of one parameters. Only 4 of the initial guesses found a global
g | optimum, and/; of the guesses led to poor fits (Rr0.25). A

standard deviation on either side of the data point orytaeis. ; ; ; : .
The tolerances used by GDOC to search for a global optimum Eliztlj)r%raSm of the 1000 multistart optima found is shown in

were RTOL= 10* and ATOL = 1075, For this particular ) )

problem, the absolute tolerance was the active stopping condi- A Second data set from the same transient absorption $fiidy,
tion. The tolerance for NPSOL was set to-20and the ATOL measured at a higher temperature than the data in Figure 3, is
for CVODES was set to 10°. A multistart analysi® showed displayed in Figure 4. Again, the fit obtained using the
that these two cases have hundreds of local minima. However,conventional local least-squares minimization approach does not
many of these local minima have similprand objective f?) faII. V\{lthln the e>.<p.er|mental error bars. By using g.lobal
values. Presumably, they arise because the noise in theddata, ©Ptimization, the fitimproves and hagvalue of 476, which-
roughens the(p) surface. From an analysis of the roughrigss, corresponds to a probability of 0.16. Even with this best possible

we set the objective function tolerance for the branch-and-bound choice for the three parameters, the deviations between the

procedure equal to 10 (the smallgdtvalues are O(100)). model and the data are significantly larger than expected from
the error bars on the data. We can conclude with a high degree
4. Results of confidence that the model is not consistent with the data for

. ny choi f th rameters.
In refs 7 and 27, experimental data were compared to severala y choice of the parameters

different proposed kinetic models using conventional optimiza- . A9@in. by using the multistart algorithm, 1000 local optimiza-
tion methods to find local minima. The goal was to identify 10nS of the model parameters were performed against the data
kinetic model(s) consistent with a large and varied set of Shown in Figure 4. Figure 6 shows that finding the most
experimental and theoretical information on the reactions of Significant optima is much more difficult in comparison to the
cyclohexadienyl radical. For clarity, we focus on an apparently 298 K data. The chances of randomly finding the best possible
simple subproblem that needs to be solved in order to achievefit to the data are, literally, 1 in 1000.
that goal: fitting a kinetic data trace to a single model. There are of course many possible reasons why a model could
For the data set shown in Figure 3, the best local fit obtained be inconsistent with data, and this particular model is based on
previously-2” using the kinetic model detailed in Table 1 had a quite a large number of assumptions. In this particular case, it
significant discrepancy from the experimental data. The authors seems most likely that the heats of reaction for steps 2 and 3
assumed that this poor fit indicated that something was wrong computed in refs 7 and 27 are slightly off, causing the computed
with the structure of the model and published several specula-equilibrium constant&, andKs to have the wrong temperature
tions about possible failings in the model which could rationalize dependence. Taylor et 4" noted that their computed heats of
the discrepancy2” However, a globally optimized fit obtained  reaction could be in error by a few kcal/mol, more than enough
in the present work fits the data set very well withyavalue to resolve the discrepancy in Figure 4. As discussed extensively
of 128, as shown in Figure 3. The model actually is consistent in refs 7 and 27, there are many other possible problems with
with the data, and there is no discrepancy that needs to bethe model in Table 1. Even if it happened to perfectly match
explained! The authors of refs 7 and 27 were misled, becauseall the available data, that would nptove it was correct. What
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Figure 6. Histogram of the local minima found from nonlinggrfits
to the data in Figure 4. Each of the 1000 different local optimizations

performed began from a random initial guess spanning the physically
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